首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2649篇
  免费   25篇
  国内免费   14篇
工业技术   2688篇
  2023年   67篇
  2022年   81篇
  2021年   103篇
  2020年   106篇
  2019年   83篇
  2018年   73篇
  2017年   75篇
  2016年   30篇
  2015年   20篇
  2014年   129篇
  2013年   151篇
  2012年   121篇
  2011年   224篇
  2010年   217篇
  2009年   172篇
  2008年   203篇
  2007年   179篇
  2006年   104篇
  2005年   77篇
  2004年   69篇
  2003年   57篇
  2002年   46篇
  2001年   30篇
  2000年   27篇
  1999年   31篇
  1998年   33篇
  1997年   27篇
  1996年   21篇
  1995年   25篇
  1994年   15篇
  1993年   10篇
  1992年   13篇
  1991年   17篇
  1990年   11篇
  1989年   15篇
  1988年   6篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有2688条查询结果,搜索用时 31 毫秒
1.
Hydrogen is currently receiving significant attention as an alternative energy resource, and among the various methods for producing hydrogen, methanol steam reforming (MSR) has attracted great attention because of its economy and practicality. Because the MSR reaction is inherently activated over catalytic materials, studies have focused on the development of noble metal-based catalysts and the improvement of existing catalysts with respect to performance and stability. However, less attention has been paid to the modification and development of innovative MSR reactors to improve their performance and efficiency. Therefore, in this review paper, we summarize the trends in the development of MSR reactor systems, including microreactors and membrane reactors, as well as the various structured catalyst materials appropriate for application in complex reactors. In addition, other engineering approaches to achieve highly efficient MSR reactors for the production of hydrogen are discussed.  相似文献   
2.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
3.
The paper presents a calculated analysis of the equilibrium emission of nitrogen oxides on the exhaust of carburetor and diesel internal combustion engines. The temperature of fuel oxidation is assumed to be 1,400 °C while the pressure for carburetor and diesel engines is assumed to be 60 atm and 80 atm respectively. The studies have been carried out for natural and synthetic fuels such as hydrogen, ethanol, methanol, petroleum, diesel fuel and methane at the excess air coefficient corresponding to the fuel oxidation temperature of 1,400 °C. In the paper, the method for calculating the equilibrium composition based on the equilibrium constant and mass conservation equations has been applied. It is shown that with an increase in pressure from 1 atm to 60 atm for carburetor engines and up to 80 atm for diesel engines, the reaction of nitrogen dioxide formation may shift towards an increase in NO2. The formation of NO may be not affected by the increase in pressure by virtue of the fact that the reaction proceeds without changes in the amount. It has been determined that NO is the major atmospheric pollutant. However, it would be advisable to use more extensively the fuels characterized by the lowest output of nitrogen dioxide (methane and methanol), since nitrogen dioxide (NO2) related to the 2nd hazard class is appeared to be the most dangerous to humans. It has been revealed that the reduction in oxidation temperature using hydrogen as a fuel for electrochemical current generators may allow reducing nitrogen oxide emissions by more than an order of magnitude as compared to the best results for ICE.  相似文献   
4.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   
5.
The glassy carbon electrode is modified by poly(brilliant cresyl blue) (PBCB) to be applied as a new green and efficient platform for Pt and Pt–Ru alloy nanoparticles deposition. Surface composition, morphology and catalytic activity of these modified electrodes towards methanol oxidation are assessed by applying X-ray diffraction, field emission scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The X-ray diffraction patterns reveal that the highly crystalline Pt and Pt–Ru alloy and RuO2 nanoparticles with low crystallinity are deposited on the PBCB modified glassy carbon electrodes. The microscopic images indicate smaller size and better distribution of deposited nanoparticles on the surface of PBCB modified electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy results reveal that PBCB supported Pt and Pt–Ru nanoparticles have better electrocatalytic performance and durability towards methanol oxidation rather than the unsupported nanoparticles. From the obtained results it can be concluded that the presence of PBCB not only improves the stability of nanoparticles on the surface, but also leads to the formation of smaller size and more uniform distribution of nanoparticles on the surface, which, in turn, cause the nanoparticles to provide a higher accessible surface area and more active centers for the oxidation of methanol. The results will be valuable in extending the applications of this polymer in surface modification steps and in developing promising catalyst supports to be applied in direct methanol fuel cells.  相似文献   
6.
发展了用正电子湮没寿命参数测定用共沉淀方法制备的金属氧化物系固溶度的新方法。测量了一系列用共沉淀方法制备的不同CuO at%含量的CuO/ZnO甲醇合成催化剂粉末(压制成片)还原前后的正电子寿命谱。分析该种催化剂的固溶特性及其与正电子寿命参数的关系,得出还原后样品的固溶度为12CuOat%.支持了CuO/ZnO甲醇合成催化剂以Cu~+离子为活性中心的观点。  相似文献   
7.
本文对Lurgi低压法甲醇工艺中压力的参变效应进行了探讨.通过计算机模拟,给出了合成压力变化的效应情况.计算结果表明煤头小型低压法甲醇装置的合成压力应高于大型装置的合成压力,其值在7.3~8.0MPa之间可取得最佳的节能降耗效果.  相似文献   
8.
本文测定了酒精中甲醇、水单组分及二元组分的吸附等温线,并用Langmuir方程进行了拟合。在固定床动态吸附研究申测定了酒精中甲醇、水单组分及双组分吸附穿透曲线;着重考察了流速、温度、不同甲醇和水含量对双组分吸附性能的影响。对二个组分的传质机理及置换关系进行了分析探讨。  相似文献   
9.
简要地叙述了国内外乙醇电催化氧化的研究进展,着重介绍不同电极材料对乙醇电氧化的影响及目前所提山的机理,并对其可能的研究方向提出了建议。  相似文献   
10.
On-line NMR spectroscopy can beneficially be applied to studies of supercritical and near-critical fluids as an alternative to optical spectroscopy. Up to now high pressure NMR experiments are predominantly accomplished using custom made NMR batch reactors. The authors present a novel high pressure cell with displacement plunger for on-line NMR experiments on compressible fluids which can be used in conjunction with commercially available SCF NMR flow probes. The on-line technique offers advantages compared to stopped flow techniques such as enhanced control of mixture composition and reaction parameters as well as the facility of engagement into the reaction. The new apparatus is used for NMR studies on hydrogen bonding of methanol in near critical and supercritical carbon dioxide up to 403 K and 35 MPa for which data on the chemical shift of the hydroxyl group and methyl group are reported and interpreted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号